导读:高等数学是全国硕士研究生数学考试中最灵活的一个模块,并且分值比较高,数二试题占78%,因此我们必须引起高度重视。

  荐>>最后70天,18考研英语五大题型如何备考?

高等数学是全国硕士研究生数学考试中最灵活的一个模块,并且分值比较高,数二试题占78%,因此我们必须引起高度重视。
结合10年真题,求函数极限、一元函数求导数与极值、多元函数求偏导与极值、求不定积分、求定积分、求二重积分都是高频题型,这些常规题型学员一定要非常熟练的掌握。

正确的理解了极限,高数的学习就成功了一半,同时,它们也是非常重要的考点,平均每年直接考查所占的分值在10分左右,极限的计算有9种方法:四则运算、等价无穷小的替换、洛必达法则、两个重要的极限、单侧极限、单调有界定理、夹逼准则、泰勒定理、定积分的定义(包括二重积分)。

二重积分问题对于数二的考生来说是每年必考的内容,考查的方式理论知识我们都知道的,无外乎就是直角坐标变换、极坐标变换、交换积分次序、利用奇偶性等进行计算,方法固定。每年的出题点就是变换积分次序和被积函数,考生只需要掌握解决二重积分的计算方法,如果考生细心的话,也会发现,二重积分的计算量还是蛮大的,跨考教育数学教研室田宏老师告诉大家这就需要考生结合一定量的练习解决计算的问题。

微分方程经常以综合题目的形式考查。微分方程数一、二考查无外乎就是那几种方程的的计算方法、几何应用、物理应用等,而数三考查的就少一点,考查几种简单方程的计算方法与几何应用。微分方程是数二每年必考的问题,多为几何应用、积分等问题,需要考生分析题干写出方程并求出解。